Time Step Restrictions Using Semi-implicit Methods for the Incompressible Navier-stokes Equations

نویسنده

  • WENDY KRESS
چکیده

The incompressible Navier-Stokes equations are discretized in space and integrated in time by the method of lines and a semi-implicit method. In each time step a set of systems of linear equations has to be solved. The size of the time steps are restricted by stability and accuracy of the time-stepping scheme, and convergence of the iterative methods for the solution of the systems of equations. The stability is investigated with a linear model equation derived from the Navier-Stokes equations. The resolution in space and time is estimated from turbulent flow physics. The convergence of the iterative solvers is studied using the same model equation. The stability constraints and the convergence rate obtained from the model equation are compared to results for a semi-implicit integrator of the Navier-Stokes equations with good agreement. The most restrictive bound on the time step is given by accuracy, stability, or convergence depending on the flow conditions and the numerical method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Semi-Explicit Multi-Step Method for Solving Incompressible Navier-Stokes Equations

The fractional step method is a technique that results in a computationally-efficient implementation of Navier–Stokes solvers. In the finite element-based models, it is often applied in conjunction with implicit time integration schemes. On the other hand, in the framework of finite difference and finite volume methods, the fractional step method had been successfully applied to obtain predicto...

متن کامل

Semi - Implicit Runge - Kutta Schemes Forthe Navier - Stokes Equations

The stationary Navier-Stokes equations are solved in 2D with semi-implicit Runge-Kutta schemes, where explicit time-integration in the streamwise direction is combined with implicit integration in the body-normal direction. For model problems stability restrictions and convergence properties are studied. Numerical experiments for the ow over a at plate show that the number of iterations for the...

متن کامل

An unconditionally stable rotational velocity-correction scheme for incompressible flows

We present an unconditionally stable splitting scheme for incompressible Navier-Stokes equations based on the rotational velocity-correction formulation. The main advantages of the scheme are: (i) it allows the use of time step sizes considerably larger than the widely-used semi-implicit type schemes: the time step size is only constrained by accuracy; (ii) it does not require the velocity and ...

متن کامل

Semi - Lagrangian multistep exponential integrators for index 2 differential algebraic system

Implicit-explicit (IMEX) multistep methods are very useful for the time discretiza-tion of convection diffusion PDE problems such as the Burgers equations and also the incompressible Navier-Stokes equations. Semi-discretization in space of the latter typically gives rise to an index 2 differential-algebraic (DAE) system of equations. Runge-Kutta (RK) methods have been considered for the time di...

متن کامل

Open and traction boundary conditions for the incompressible Navier-Stokes equations

We present numerical schemes for the incompressible Navier–Stokes equations (NSE) with open and traction boundary conditions. We use pressure Poisson equation (PPE) formulation and propose new boundary conditions for the pressure on the open or traction boundaries. After replacing the divergence free constraint by this pressure Poisson equation, we obtain an unconstrained NSE. For Stokes equati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004